
Manual: FDO91 Manual
Chapter 1: Introduction describes the basics of form development, the FDO91 language and its
structure, and the contents of this manual.
Last updated: February 1998

America Online Confidential 1-1  America Online, Inc. 1993-98

C H A P T E R 1

Introduction

FDO91 is a programming language designed to control all client computer

functionality for the Windows™ and for Macintosh platforms of the online
service. You can enhance existing client functionality by using this language.

FDO91 evolved from the FDO88 language, which is the original online service

forms display language developed for the Apple II platform. The acronym
FDO stands for "Form Display Operation."

FDO91 atoms are the commands that form the basis of the FDO91 language.
An atom stream is created when a number of atoms are put together in a
sequence that performs a specific function. Atom streams can be stored and
sent from the host system servers or from the local client database. Atom
streams sent from a host system server or from the client are assembled into
data packets.

Figure 1.1 shows the host system server to client PC connection types, which
are a phone line network and a TCP/IP network that carry the atom streams:

Host
Host

Client PC

AOLNet
(Phone Lines)

Host System Servers
(HP/UNIX, Stratus, Tandem)

Client PC

TCP/IP

Modem

Internet

Atom Streams

TCP/IP

Figure 1.1 – Atom Streams in the Host to Client PC Connections

Chapter 1: Introduction February 1998

America Online Confidential 1-2  America Online, Inc. 1993-98

Form Development

The major use of the FDO91 language is for the development of forms, or
windows, for the online service. This section presents an atom stream that
builds a simple form and information about how a form is developed.

The Form
An atom stream, which consists of a series of FDO91 atoms, determines the
content and design of a form. Figure 1.2 shows a sample form (dialog box) as
an online member sees it, followed by the FDO91 atom stream that produced
the form, and a brief description of each atom’s function:

Atom Stream Atom Function
atom$uni_start_stream Starts the atom stream.
atom$man_start_object <ind_group, "Exit
Gateway">

Creates a window.

atom$mat_orientation <vff> Makes the window vertically oriented.
atom$mat_position <5> Centers the window on the screen.
atom$man_start_object <ornament, "Are
you sure you want to sign off?">

Creates a text field with specified text.

atom$mat_size 14x 02x Sets the size of the text field.
atom$mat_font_id <1> Sets the text field's font ID.
atom$mat_font_size <14> Sets the text field's font size.
atom$mat_font_style <1> Sets the text field's font style.
atom$man_start_sibling <org_group> Creates an organizational group.
atom$mat_orientation <hef> Makes the group horizontally oriented.
atom$man_start_object <trigger, "Yes"> Creates a button with a "Yes" label.
atom$mat_bool_default <yes> Sets the previous object as the default.
atom$man_start_sibling <trigger, "No"> Creates a button with a "No" label.
atom$man_start_sibling <trigger, "Exit
Application">

Creates a button with an "Exit
Application" label.

atom$man_end_object Terminates the organizational group.
atom$man_update_display Sends the objects to the screen.
atom$uni_wait_off Turns off the wait cursor.
atom$uni_end_stream Specifies the end of the atom stream.

Figure 1.2 – FDO91 Form Example

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-3 America Online Confidential

A typical atom stream for a form consists of:

• A command that creates a window (form)

• One or more commands that set attributes of the form

• Several commands that create objects (such as buttons, list boxes, view
fields) or actions on a form

• One or more commands that set attributes for the objects on a form

All forms have a form ID called a global ID (GID). Identifiers 32-0199 and
40-2000 are examples of GIDs for forms. Typically, GIDs that begin with 32
provide the basic core of a form (canned-form functionality) and often they are
client-based forms. GIDs that begin with 40 through 43 typically provide more
online content for information providers. Note that forms produced with the
VP Designer tool begin with GIDs of 43.

All streams have a unique stream identifier called a stream ID (SID) so that a
number of concurrent form activities can be tracked and processed between the
client and host. Stream IDs can be generated by the host or client.

Objects, IDs, and Their Context

Objects are an integral part of form design. Within the atom streams, the
objects are defined in a hierarchical order (tree structure) that begins with a
window (root) object. Window objects can have object groups that contain
subordinate (children) objects, which together provide the form features and
content. Figure 1.3 shows some common types of form display objects such as
ornamental pictures and text, list boxes, buttons, and input fields. For more
specific information about object names, see Chapter 3, "Attribute Manager
Protocol," which defines the available form display objects.

Chapter 1: Introduction February 1998

America Online Confidential 1-4  America Online, Inc. 1993-98

Ornamental Picture
List Box

Button

Radio Button

Radio Button

Check Box

Check Box

Ornamental Text

 Input Field (edit_view)Enter xyz:

Figure 1.3 – Objects on Forms

When you modify objects on a form, you must establish an operating focus
(context) in your atom streams to a specific object so that the form compiler
tool can synchronize its operation to the correct object on your form. In your
code stream, set the context to the specific object, and then end that context
when the defined operations on the object are complete (before you code the
next object in the sequence). All objects on a form can be identified with a
unique relative ID. In the following example, there are two button (trigger)
objects in the form being defined as relative ID 1 and 2:

atom$man_start_object <trigger>
ê atom$mat_relative_tag <1>

atom$man_end_object
atom$man_start_object <trigger>

ê atom$mat_relative_tag <2>
atom$man_end_object

In the following example, the context is set to relative ID 14 to add mail folder
items to this object. Then the context is changed to relative ID 13 to make
object 13 nonselectable:

atom$uni_start_stream
ê atom$man_set_context_relative <14>

atom$man_build_savemail_menu
atom$man_end_context

ê atom$man_set_context_relative <13>
atom$mat_bool_disabled <yes>
atom$man_end_context
atom$man_update_display
atom$uni_end_stream

Art (graphic) and binary record objects are also identified with a GID.
Identifiers 1-0-01234 and 20-0-00335 are examples of GIDs for art and binary

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-5 America Online Confidential

records. Typically, GIDs that begin with 1 are art-based objects, and GIDs
that begin with 20 are records stored in a database. The following example
assigns an art GID of 1-0-02201 to a button (trigger) object:

atom$mat_start_object <trigger>
atom$mat_relative_tag <1>

ê atom$mat_art_id <1-0-02201>
atom$mat_precise_x <370>
atom$mat_precise_y <105>
atom$mat_art_animation_rate <250>
atom$mat_art_animation_seq <1 5 0 1>
atom$mat_repeat_animation <yes>
.
.
.
atom$mat_end_object

Objects on a form can be placed in one of two layout forms: precise
positioning and relative grouping.

Precise positioning requires exact pixel placement on both the x and y axes.
The following example defines the placement of all objects on the form as
precise positioned:

atom$man_start_object <ind_group, "Roll Over Beethoven">
atom$mat_bool_background_pic <yes>
atom$mat_art_id <1-0-2196>

ê atom$mat_bool_precise <yes>
atom$mat_precise_width <500>
atom$mat_precise_height <333>
atom$man_start_object <ornament, "Music Forums”>
atom$mat_precise_x <9>
atom$mat_precise_y <10>
atom$mat_precise_width <204>
atom$mat_precise_height <18>
.
.
.
atom$man_end_object

Relative grouping requires horizontal and vertical justification (hff and vff
format) for object placement. The following example evenly spaces the
placement of trigger objects along the horizontal axis (hee):

atom$man_start_object <ind_group>
atom$man_start_object <org_group>

ê atom$mat_orientation <hee>
atom$man_start_object <trigger>
atom$mat_title <"Button 1">
atom$man_end_object
atom$man_start_object <trigger>
atom$mat_title <"Button 2">
atom$man_end_object
atom$man_start_object <trigger>

Chapter 1: Introduction February 1998

America Online Confidential 1-6  America Online, Inc. 1993-98

atom$mat_title <"Button 3">
atom$man_end_object

You can combine the two groupings within a form; however, you cannot
combine them within the context of the group. Once an item in the object tree
is made precise, all objects subordinate to it must be precise.

Form Compilers

There are two form compiler tools that you can use to create and edit atom
streams for form development: VP Designer and form_edit.

VP Designer is a Graphical User Interface (GUI) tool that lets you create,
modify, and browse forms while still online. form_edit is a Stratus-based tool
that lets you create and modify forms offline.

After you create the form with either tool, you compile it and then display it on
a client platform. The tools also let you decompile an existing form so you can
view both its object tree structure and its raw data structure, which is the atom
stream.

When you use either tool, forms are constructed in a general tree structure,
which begins with a root (the window), which splits into branches (groups)
that hold the leaves (the objects the member sees on the form).

When you initially execute form_edit, the main screen appears with a window
object already created. You can add objects to the object tree structure by
making menu selections.

When you use form_edit to create or edit a tree structure, you view the form
or object definitions in Pre-stream, In-stream, and Post-stream entry fields.
Each object in the tree must be relative to the three entry fields. The Pre-
stream is used for the typical initial code to prepare or define global IDs before
the form is transferred to the client. In-stream code is where the actual form
construction takes place. Post-stream is where the maintenance, upkeep, and
cleanup tasks are performed.

For more information about the use of VP Designer, see Chapter 4 of the
America Online manual Remote Managed Gateways.

For more information about the use of form_edit, see the America Online
manual Building an Online Service.

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-7 America Online Confidential

FDO91 Features

The main design features of FDO91 include:

• Support of multiple, concurrent atom streams

• Use of a single, centralized command structure (atom$) that drives all
client functionality

• Use of abstract object classes to allow for platform independence

• Use of a true object tree model for complex and flexible object
relationships

• Use of consistent operations across object classes

• Ability for action criteria to include custom behavior that can be
programmer-defined

• Support of numeric, string, and raw data variables

• Support of branching and looping

• Ability for atoms to return values and to substitute a return value as a
command parameter

• Ability to create, delete, change, and query objects at any time

• Ability to perform data extraction

FDO91 Structure

FDO91 atoms are sent back and forth to enable interaction between the client
and the host. Atoms are grouped into protocols, which are sets of commands
that perform related logical functions. The atoms and protocols are described
in the following sections.

Atoms

Atoms follow a format that consists of the string "atom$" followed by the atom
name and its arguments. Atoms can also return values to which other atoms

Chapter 1: Introduction February 1998

America Online Confidential 1-8  America Online, Inc. 1993-98

can respond. Although most atoms have arguments and return values, some
do not.

An example of the syntax of an atom is as follows:

atom$var_number_set <register, data>

where

atom$var_number_set is the atom command.

<register> is a required first argument.

<data> is a required second argument.

For more information about the conventions used for command syntax, see
"Conventions in This Manual" on page 1-15.

Data Types and Lengths of Arguments

An argument of an atom is specified in this manual as numeric, data (raw or
byte), string, or boolean. Numeric values are decimal whole numbers, which
are 0 or greater. Data (raw or byte) values are hexadecimal numbers, which
are identified with an x following each byte value (for example, 0C5E would be
coded 0Cx 5Ex). String values are a series of alphanumeric characters
bracketed with quotes, for example, "Today’s stock quotes." Boolean values
are a two-state notation and are distinguished with a yes or a no value.

Argument data lengths are one byte (8 bits) or greater. One to four bytes are
typical argument lengths. The following data length notations are used in this
manual:

byte — 8 bits

word — 16 bits (2 bytes)

dword — 32 bits (4 bytes)

Protocols

Each FDO91 protocol provides specific functionality for the online service.
For example, the Chat protocol provides the chat room functionality of the
online service. Each protocol has a unique 2-byte protocol ID that is used to

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-9 America Online Confidential

reference the specific atom handler (for America Online for Macintosh) or
client tool (for America Online for Windows).

The following table lists the FDO91 protocols, in alphabetical order, with the
protocol ID, atom prefix, description, and the chapter in which the protocol is
defined:

Table 1.1 – FDO91 Protocols

FDO91 Protocol
Proto

ID Atom Prefix Description
Chap
No.

Action 2 atom$act Associates actions with
objects

2

ActiveX 54 atom$activex Implements forms with
ActiveX™ controls

37

Address 39 atom$ad Maintains address list 9
ARTdoc 31 atom$doc Opens and plays data

streams from the
ARTdoc database

38

Attribute Manager 16 atom$mat Sets attributes on forms 3
Async 13 atom$async Miscellaneous functions 10
Asynchronous Data 66 atom$adp Handles large chunks of

data transfers
42

Buffer 4 atom$buf Handles data packets 4
Chart 23 atom$chart Provides charting

functions
12

Chat 11 atom$chat Provides chat functions 11
Code Manager 10 atom$cm Handles code

management
13

Comm. Control
Language

34 atom$ccl Handles CCL 14

Conditional 15 atom$if Handles conditional
operations

5

Data Manager 3 atom$de Handles data extraction 15
Database Manager 5 atom$idb Maintains online

database
16

Device Independent
Connectivity Engine

57 atom$dice Handles client computer
connectivity

34

Display Manager 1 atom$man Handles forms display 6
External API 26 atom$exapi Handles external

applications
17

File Manager 8 atom$fm Handles file
management

18

File Transfer 7 atom$xfer Handles file transfer 19

Chapter 1: Introduction February 1998

America Online Confidential 1-10  America Online, Inc. 1993-98

Table 1.1 – FDO91 Protocols (Continued)

FDO91 Protocol
Proto

ID Atom Prefix Description
Chap
No.

Gallery 56 atom$gallery Handles thumbnail
images and their display

36

Host Forms Server 51 atom$hfs Handles host forms 20
Image Manager 22 atom$image Sets attributes for

graphic displays
21

Image Transfer 21 atom$imgxfer Handles image display 22
List Manager 9 atom$lm Handles list management 23
Message Interchange 17 atom$mip Handles message data

transport
24

Multimedia
organizer

24 atom$morg Maintains personal filing
cabinet

25

Multimedia Interface 20 atom$mmi Handles multimedia files
and display

26

Pictalk 29 atom$pictalk Handles slideshow data
streams

39

P3 35 atom$p3 Handles P3
communication

28

Progressive
Rendering

27 atom$dod Handles progressive
rendering

27

Radio 28 atom$radio Captures and plays radio
program streams

40

Rich 25 atom$rich Handles enhanced text
attributes

29

Shorthand Manager 14 atom$sm Replaces lengthy atom
streams

30

Spell 61 atom$spell Invokes the spell dialog
box

41

Tool Manager 42 atom$mt Manages client tools 31
Universal 0 atom$uni Controls atom streams 7
Variable 12 atom$var Associates variables

with objects
8

Video 53 atom$vid Handles video images
and display

35

Visual
Rainman

47 atom$vrm Manages Rainman forms 32

WWW 48 atom$www Handles web browser
forms

33

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-11 America Online Confidential

About This Manual

This manual describes the FDO91 protocols and provides detailed definitions
and examples of the atoms within each protocol. The manual is organized into
two volumes:

• Volume 1 contains the general purpose protocols responsible for overall
stream management functions, such as starting and stopping atom streams,
setting action criteria, and specifying object attributes.

• Volume 2 contains a wide variety of miscellaneous protocols that perform
specialized functions, such as handling P3 communications, maintaining
address lists, and managing web browser forms.

Who Should Use This Manual

This manual is intended as a reference guide for programmers who want to
develop additional functionality for the online service client application. This
manual is also intended for online service staff who create and maintain areas,
forms, and pathways for the online service.

Security Issues

This manual contains confidential material and is intended for use only by
America Online employees. As the owner of this manual, it is your
responsibility to take the necessary precautions to ensure that it does not leave
your possession.

Chapter Overview

This manual is divided into 2 volumes, 42 chapters, and 2 appendixes, as
follows:

Volume 1

Chapter 1, "Introduction," describes the basics of form development, the
FDO91 language and its structure, and the contents of this manual.

Chapter 2, "Action Protocol," defines the action protocol atoms and provides
information for associating actions with FDO91 objects.

Chapter 1: Introduction February 1998

America Online Confidential 1-12  America Online, Inc. 1993-98

Chapter 3, "Attribute Manager Protocol," defines the attribute manager
protocol atoms and provides information for specifying form attributes.

Chapter 4, "Buffer Protocol," defines the buffer protocol atoms and provides
information for handling data packets.

Chapter 5, "Conditional Protocol," defines the conditional protocol atoms and
provides information for handling conditional operations.

Chapter 6, "Display Manager Protocol," defines the display manager protocol
atoms and provides information for handling forms display.

Chapter 7, "Universal Protocol," defines the universal protocol atoms and
provides information for controlling atom streams.

Chapter 8, "Variable Protocol," defines the variable protocol atoms and
provides information for associating variables with objects.

Chapter 9, "Address Protocol," defines the address protocol atoms and
provides information for maintaining address lists.

Chapter 10, "Async Protocol," defines the async protocol atoms and provides
information on miscellaneous FDO91 functions.

Volume 2

Chapter 11, "Chart Protocol," defines chart protocol atoms and provides
information for building charts with numeric data from the online service.

Chapter 12, "Chat Protocol," defines chat protocol atoms and provides
information for chat functionality.

Chapter 13, "Code Manager Protocol," defines code manager protocol atoms
and provides information for handling code management.

Chapter 14, "Communications Control Language (CCL) Protocol," defines
CCL protocol atoms and provides information for the CCL.

Chapter 15, "Data Manager Protocol," defines data manager protocol atoms
and provides information for handling data extraction.

Chapter 16, "Database Manager Protocol," defines database manager protocol
atoms and provides information for maintaining the online database.

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-13 America Online Confidential

Chapter 17, "External API Protocol," defines external API protocol atoms and
provides information for external third-party applications.

Chapter 18, "File Manager Protocol," defines file manager protocol atoms and
provides information for handling file management.

Chapter 19, "File Transfer Protocol," defines file transfer protocol atoms and
provides information for handling file transfer.

Chapter 20, "Host Forms Server Protocol," defines host forms server protocol
atoms and provides host forms information.

Chapter 21, "Image Manager Protocol," defines image manager protocol
atoms and provides information for handling hotspots and image display.

Chapter 22, "Image Transfer Protocol," defines image transfer protocol atoms
and provides information for handling image display.

Chapter 23, "List Manager Protocol," defines list manager protocol atoms and
provides information for managing lists such as lists of e-mail messages.

Chapter 24, "Message Interchange Protocol," defines message interchange
protocol atoms and provides information for handling message data transport.

Chapter 25, "MORG Protocol," defines the MORG (multimedia organizer)
protocol atoms and provides information for maintaining personal filing
cabinets.

Chapter 26, "Multimedia Interface (MMI) Protocol," defines the multimedia
interface protocol atoms and provides information for handling and playing
multimedia files.

Chapter 27, "P3 Protocol," defines P3 protocol atoms and provides
information for handling P3 communication.

Chapter 28, "Progressive Rendering Protocol," defines progressive rendering
protocol atoms and provides information for rendering forms progressively.

Chapter 29, "Rich Protocol," defines rich protocol atoms and provides
information for rendering text with hypertext markup language (HTML) tags.

Chapter 30, "Shorthand Protocol," defines shorthand protocol atoms and
provides information for replacing lengthy atom streams.

Chapter 1: Introduction February 1998

America Online Confidential 1-14  America Online, Inc. 1993-98

Chapter 31, "Tool Manager Protocol," is not included in this release. It will
define tool manager protocol atoms and provide information for tool
management.

Chapter 32, "Visual Rainman Protocol," is not included in this release. It will
define visual Rainman protocol atoms and provide information on the online
publishing tools used to maintain areas of the online service.

Chapter 33, "WWW Protocol," defines World Wide Web protocol atoms and
provides information for handling Web browser forms.

Chapter 34, "Device Independent Connectivity (DICE) Protocol," defines
atoms that initiate and manage all client computer connections.

Chapter 35, "Video (VID) Protocol," defines the atoms that manage and
transmit video and still-camera images between members.

Chapter 36, "Gallery Protocol," defines the atoms that manage thumbnail
images and arrange them in gallery views.

Chapter 37, "ActiveX Protocol," defines the atoms that manage ActiveX™
controls for 32-bit Windows applications.

Chapter 38, "ARTdoc Protocol," defines the atoms that open and play
ARTdoc database record streams.

Chapter 39, "Pictalk Protocol," defines the atoms that open and play
multimedia files or slideshow data streams.

Chapter 40, "Radio Protocol," defines the atoms that capture and play radio
program streams from live broadcasts and stored files.

Chapter 41, "Spell Protocol," defines the atoms that bring up the spell
preferences dialog box.

Chapter 42, "Asynchronous Data Protocol," defines the atoms that manage the
asynchronous transfer of large blocks of data between the host and client PCs.

Appendix A, "Examples," provides examples of MIP and List Manager atom
streams.

Appendix B, "Internationalization (i18n) Atoms," defines i18n atoms and
provides information for localizing data sent from the host system to
international clients of the online service.

February 1998 FDO91 Manual, Vol. 1

 America Online, Inc. 1993-98 1-15 America Online Confidential

Conventions in This Manual

Atom commands in this manual appear in the following format:

atom$prot_command <arguments>

Note that when you are using VP Designer, you do not code the prefix
(atom$) with each atom entry.

The following conventions are used throughout this manual in defining atom
command syntax:

<arguments> Angle brackets enclose all arguments whether
the argument is required or optional.

<arg1, arg2[, arg3]> When you code atoms with multiple arguments
using VP Designer, commas separate each
argument. Note that chapters with a header date
before April 1997 do not show this convention,
because they were written for form_edit. An
argument shown in square brackets indicates that
the argument is optional.

<arg1> <arg2> [<arg3>] When you code atoms with multiple arguments
using form_edit, space delimiters and/or angle
brackets separate each argument without
commas. Note that chapters with a header date
before April 1997 still use this convention with
angle brackets around each argument. An
argument shown in square brackets indicates an
optional argument.

(<arg1> | <arg2>) Parentheses are used around arguments that
have an association, and a vertical bar indicates
an either/or choice between arguments.

<arg1> <arg2> ... Trailing periods indicate additional arguments
can be specified.

In examples throughout this manual, arguments appear enclosed in angle
brackets (< >) as required for VP Designer. However, you do not have to use
angle brackets around argument values when you are creating or editing an
atom stream using form_edit.

Chapter 1: Introduction February 1998

America Online Confidential 1-16  America Online, Inc. 1993-98

An atom’s argument can be defined to have a set of numeric and associated
label values. For example, atom$mat_trigger_style has a list of 10 defined
argument values from which you select trigger styles. The values are defined 0
through 9 with associated value labels. For example, either the value 8 or the
value label text_on_picture can be used to apply text on the art of a trigger
object. Note that defined value labels in the text of this manual appear in a
monospace (Courier) font as illustrated in this paragraph. This convention
does not apply to chapters with a header date before July 1997.

Providing Feedback

If you have comments, corrections or questions related to this manual, please
send e-mail to screen name DevelopHlp. Please include the name of this
manual when providing your feedback.

	Form Development
	The Form
	Objects, IDs, and Their Context
	Form Compilers

	FDO91 Features
	FDO91 Structure
	Atoms
	Data Types and Lengths of Arguments
	Protocols

	About This Manual
	Who Should Use This Manual
	Security Issues
	Chapter Overview
	Volume 1
	Volume 2
	Conventions in This Manual
	Providing Feedback
	Figures
	Atom Streams in the Host to Client PC Connections
	FDO91 Form Example
	Objects on Forms

	Tables
	FDO91 Protocols

